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Fig. 1. A few examples of our word-as-image illustrations in various fonts and for different textual concept. The semantically adjusted letters are created
completely automatically using our method, and can then be used for further creative design as we illustrate here.

A word-as-image is a semantic typography technique where a word illus-
tration presents a visualization of the meaning of the word, while also
preserving its readability. We present a method to create word-as-image
illustrations automatically. This task is highly challenging as it requires
semantic understanding of the word and a creative idea of where and how to
depict these semantics in a visually pleasing and legible manner. We rely on
the remarkable ability of recent large pretrained language-vision models to
distill textual concepts visually. We target simple, concise, black-and-white
designs that convey the semantics clearly. We deliberately do not change the
color or texture of the letters and do not use embellishments. Our method
optimizes the outline of each letter to convey the desired concept, guided by
a pretrained Stable Diffusion model. We incorporate additional loss terms
to ensure the legibility of the text and the preservation of the style of the
font. We show high quality and engaging results on numerous examples
and compare to alternative techniques.

Code will be available at our project page.

1 INTRODUCTION
Semantic typography is the practice of using typography to visually
reinforce the meaning of text. This can be achieved through the
choice of typefaces, font sizes, font styles, and other typographic
elements. A more elaborate and engaging technique for semantic
typography is presented by word-as-image illustrations, where the
semantics of a given word are illustrated using only the graphical
elements of its letters. Such illustrations provide a visual repre-
sentation of the meaning of the word, while also preserving the
readability of the word as a whole.

The task of creating a word-as-image is highly challenging, as it
requires the ability to understand and depict the visual characteris-
tics of the given concept, and to convey them in a concise, aesthetic,
and comprehensible manner without harming legibility. It requires
a great deal of creativity and design skills to integrate the chosen
visual concept into the letter’s shape [Lee 2011]. In Figure 2 we show
some word-as-image examples created manually. For example, to
create the “jazz” depiction, the designer had to first choose the visual
concept that would best fit the semantics of the text (a saxophone),

consider the desired font characteristics, and then choose the most
suitable letter to be replaced. Finding the right visual element to
illustrate a concept is ill-defined as there are countless ways to il-
lustrate any given concept. In addition, one cannot simply copy a
selected visual element onto the word – there is a need to find subtle
modifications of the letters shape.
Because of these complexities, the task of automatic creation of

word-as-image illustrations was practically impossible to achieve
using computers until recently. In this paper, we define an algo-
rithm for automatic creation of word-as-image illustrations based
on recent advances in deep-learning and the availability of huge
foundational models that combine language and visual understand-
ing. Our resulting illustrations (see Figure 1) could be used for logo
design, for signs, in greeting cards and invitations, and simply for
fun. They can be used as-is, or as inspiration for further refinement
of the design.

Existing methods in the field of text stylization often rely on raster
textures [Yang et al. 2018], place a manually created style on top
of the strokes segmentation [Berio et al. 2022], or deform the text
into a pre-defined target shape [Zou et al. 2016] (see Figure 3). Only
a few works [Tendulkar et al. 2019; Zhang et al. 2017] deal with
semantic typography, and they often operate in the raster domain
and use existing icons for replacement (see Figure 3E).
Our word-as-image illustrations concentrate on changing only

the geometry of the letters to convey the meaning. We deliberately
do not change color or texture and do not use embellishments. This
allows simple, concise, black-and-white designs that convey the
semantics clearly. In addition, since we preserve the vector-based
representation of the letters, this allows smooth rasterization in
any size, as well as applying additional style manipulations to the
illustration using colors and texture, if desired.
Given an input word, our method is applied separately for each

letter, allowing the user to later choose the most likeable combina-
tion for replacement. We represent each letter as a closed vectorized

http://WordAsImage.github.io/Word-As-Image-Page
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Fig. 2. Manually created word-as-image illustrations.

shape, and optimize its parameters to reflect the meaning of the
word, while still preserving its original style and design.

We rely on the prior of a pretrained Stable Diffusion model [Rom-
bach et al. 2021] to connect between text and images, and utilize
the Score Distillation Sampling approach [Poole et al. 2022] (see
Section 3) to encourage the appearance of the letter to reflect the
provided textual concept. Since the Stable Diffusion model is trained
on raster images, we use a differentiable rasterizer [Li et al. 2020]
that allows to backpropagate gradients from a raster-based loss to
the shape’s parameters.
To preserve the shape of the original letter and ensure legibility

of the word, we utilize two additional loss functions. The first loss
regulates the shape modification by constraining the deformation
to be as-conformal-as-possible over a triangulation of the letter’s
shape. The second loss preserves the local tone and structure of the
letter by comparing the low-pass filter of the resulting rasterized
letter to the original one.

We compare to several baselines, and present many results using
various typefaces and a large number of concepts. Our word-as-
image illustrations convey the intended concept while maintaining
legibility and preserving the appearance of the font, demonstrating
visual creativity.

2 RELATED WORK
Text Stylization. One approach to text stylization is artistic text

style transfer, where the style from a given source image is migrated
into the desired text (such as in Figure 3A). To tackle this task,
existing works incorporate patch-based texture synthesis [Fish et al.
2020; Yang et al. 2017] as well as variants of GANs [Azadi et al.
2018; Jiang et al. 2019; Mao et al. 2022; Wang et al. 2019; Yang et al.
2022]. These works operate within the raster domain, a format that
is undesirable for typographers since fonts must be scalable. In
contrast, we operate on the parametric outlines of the letters, and
our glyph manipulation is guided by the semantic meaning of the
word, rather than a pre-defined style image.

A number of works [Ha and Eck 2018; Lopes et al. 2019; Wang
and Lian 2021] tackle the task of font generation and stylization
in the vector domain. Commonly, a latent feature space of font’s
outlines is constructed, represented as outline samples [Balashova
et al. 2019; Campbell and Kautz 2014] or parametric curve segments
[Ha and Eck 2018; Lopes et al. 2019; Wang and Lian 2021]. These
approaches are often limited to mild deviations from the input data.
Other methods rely on templates [Lian et al. 2018; Suveeranont and
Igarashi 2010] or on user guided [Phan et al. 2015] and automatic
[Berio et al. 2022] stroke segmentation to produce letter stylization
(such as in Figure 3B). However, they rely on a manually defined
style, while we rely on the expressiveness of Stable Diffusion to
guide the modification of the letters’ shape, to convey the meaning
of the provided word. In the task of calligram generation [Xu and

(B) Bario et al. 2022

(D) Zou et al. 2016

(E) Tendulkar et al. 2019

(A) Yang et al. 2018

(C) Zhang et al. 2017

Fig. 3. Examples of previous text stylization works – (A) Yang et al. [2018],
(B) Bario et al. [2022], (C) Zhang et al. [2017], (D) Zou et al. [2016], and (E)
Tendulkar et al. [2019]. Most use color and texture or copy icons onto the
letters. Our work concentrates on subtle geometric shape deformations of
the letters to convey the semantic meaning without color or texture (that
can be added later).

Kaplan 2007; Zou et al. 2016] the entire word is deformed into a
given target shape. This task prioritises shape over the readability
of the word (see Figure 3D), and is inherently different from ours,
as we use the semantics of the word to derive the deformation of
individual letters.
Most related to our goal, are works that perform semantic styl-

ization of text. Tendulkar et al. [2019] replace letters in a given
word with clip-art icons describing a given theme (see Figure 3E).
To choose the most suitable icon for replacement, an autoencoder
is used to measure the distance between the letter and icons from
the desired class. Similarly, Zhang et al. [2017] replace stroke-like
parts of one or more letters with instances of clip art to generate
ornamental stylizations. An example is shown in Figure 3C. These
approaches operate in the raster domain, and replace letters with
existing icons, which limits them to a predefined set of classes
present in the dataset. Our method, however, operates in the vector
domain, and incorporates the expressiveness of large pretrained
image-language models to create a new illustration that conveys
the desired concept.

Large Language-Vision Models. With the recent advancement of
language-vision models [Radford et al. 2021] and diffusion mod-
els [Nichol et al. 2021; Ramesh et al. 2022; Rombach et al. 2021], the
field of image generation and editing has undergone unprecedented
evolution. Having been trained on millions of images and text pairs,
these models have proven effective for performing challenging vi-
sion related tasks such as image segmentation [Amit et al. 2021],
domain adaptation [Song et al. 2022], image editing [Avrahami et al.
2022; Hertz et al. 2022; Tumanyan et al. 2022a], personalization [Gal
et al. 2022, 2023; Ruiz et al. 2022], and explainability [Chefer et al.
2021]. Despite being trained on raster images, their strong visual
and semantic priors have also been shown to be successfully applied
to other domains, such as motion [Tevet et al. 2022], meshes [Michel
et al. 2021], point cloud [Zhang et al. 2021], and vector graphics.
CLIPDraw [Frans et al. 2021] uses a differentiable rasterizer [Li
et al. 2020] to optimize a set of colorful curves w.r.t. a given text
prompt, guided by CLIP’s image-text similarity metric. Tian and Ha
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Fig. 4. More word-as-images produced by our method. Note how styles of
different fonts are preserved by the semantic modification.

[2021] use evolutionary algorithms combined with CLIP guidance to
create abstract visual concepts based on text. Other works [Vinker
et al. 2022a,b] utilize the image encoder of CLIP to generate abstract
vector sketches from images.

Diffusion models have been used for the task of text guided image-
to-image translation [Choi et al. 2021; Tumanyan et al. 2022b]. In
SDEdit [Meng et al. 2022], an adequate amount of noise is added
to a reference image, such that its overall structure is preserved,
and then the image is denoised in a reverse process with a guiding
text. Pretrained diffusion models have also been used to generate
3D objects [Metzer et al. 2022; Poole et al. 2022], or vector art [Jain
et al. 2022] conditioned on text.
In our work we also utilize the strong visual and semantic prior

induced by a pretrained Stable Diffusion model [Rombach et al.
2021], however, for the task of semantic typography. For that purpose
we add new components to the optimization process to preserve
the font’s style and text legibility.

3 BACKGROUND

3.1 Fonts and Vector Representation
Modern typeface formats such as TrueType [Penney 1996] and
PostScript [Inc. 1990] represent glyphs using a vectorized graphic
representation of their outlines. Specifically, the outline contours are
typically represented by a collection of lines and Bézier or B-Spline
curves. This representation allows to scale the letters and rasterize
them in any desired size similar to other vector representations.
This property is preserved by our method as our output preserves
the vectorized representations of the letters.

3.2 Latent Diffusion Models
Diffusion models are generative models that are trained to learn
a data distribution by the gradual denoising of a variable sampled
from a Gaussian distribution.
In our work, we use the publicly available text-to-image Stable

Diffusion model [Rombach et al. 2021]. Stable Diffusion is a type of
a latent diffusion model (LDM), where the diffusion process is done
over the latent space of a pretrained image autoencoder. The encoder

E is tasked with mapping an input image 𝑥 into a latent vector 𝑧,
and the decoder D is trained to decode 𝑧 such that D(𝑧) ≈ 𝑥 .

As a second stage, a denoising diffusion probabilisticmodel (DDPM)
[Ho et al. 2020] is trained to generate codes within the learned latent
space. At each step during training, a scalar 𝑡 ∈ {1, 2, ...𝑇 } is uni-
formly sampled and used to define a noised latent code 𝑧𝑡 = 𝛼𝑡𝑧+𝜎𝑡𝜖 ,
where 𝜖 ∼ N(0, 𝐼 ) and 𝛼𝑡 , 𝜎𝑡 are terms that control the noise sched-
ule, and are functions of the diffusion process time 𝑡 .

The denoising network 𝜖𝜃 which is based on a UNet architecture
[Ronneberger et al. 2015], receives as input the noised code 𝑧𝑡 , the
timestep 𝑡 and an optional condition vector 𝑐 (𝑦), and is tasked with
predicting the added noise 𝜖 . The LDM loss is defined by:

L𝐿𝐷𝑀 = E𝑧∼E(𝑥 ),𝑦,𝜖∼N(0,1),𝑡
[
| |𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐 (𝑦)) | |22

]
. (1)

In Stable Diffusion, for text-to-image generation, the condition
vector is the text embedding produced by a pre-trained CLIP text
encoder [Radford et al. 2021]. At inference time, a random latent
code 𝑧𝑇 ∼ N(0, 𝐼 ) is sampled, and iteratively denoised by the trained
𝜖𝜃 until producing a clean 𝑧0 latent code, which is passed through
the decoder 𝐷 to produce the image 𝑥 .

3.3 Score Distillation
It is desirable to utilize the strong prior of pretrained large text-
image models for the generation of modalities beyond rasterized
images. In Stable Diffusion, text conditioning is performed via the
cross-attention layers defined at different resolutions in the UNet
network. Thus, it is not trivial to guide an optimization process
using the conditioned diffusion model.

DreamFusion [Poole et al. 2022] proposed a way to use the diffu-
sion loss to optimize the parameters of a NeRF model for text-to-3D
generation. At each iteration, the radiance field is rendered from a
random angle, forming the image 𝑥 , which is then noised to form
𝑥𝑡 = 𝛼𝑡𝑥 + 𝜎𝑡𝜖 . The noised image is then passed to the pretrained
UNet model of Imagen [Saharia et al. 2022], that outputs the pre-
diction of the noise 𝜖 . The score distillation loss is defined by the
gradients of the original diffusion loss:

∇𝜙L𝑆𝐷𝑆 =

[
𝑤 (𝑡) (𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑦) − 𝜖) 𝜕𝑥

𝜕𝜙

]
(2)

where 𝑦 is the condition text prompt, 𝜙 are the NeRF’s parameters
and𝑤 (𝑡) is a constant multiplier that depends on 𝛼𝑡 . During train-
ing, the gradients are back-propagated to the NeRF parameters to
gradually change the 3D object to fit the text prompt. Note that the
gradients of the UNet are skipped, and the gradients to modify the
Nerf’s parameters are derived directly from the LDM loss.

3.4 VectorFusion
Recently, VectorFusion [Jain et al. 2022] utilized the SDS loss for the
task of text-to-SVG generation. The proposed generation pipeline
involves two stages. Given a text prompt, first, an image is generated
using Stable Diffusion (with an added suffix to the prompt), and
is then vectorized automatically using LIVE [Ma et al. 2022]. This
defines an initial set of parameters to be optimized in the second
stage using the SDS loss. At each iteration, a differentiable rasterizer
[Li et al. 2020] is used to produce a 600 × 600 image, which is then
augmented as suggested in CLIPDraw [Frans et al. 2021] to get a
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Fig. 5. An overview of our method. Given an input letter 𝑙𝑖 represented by a set of control points 𝑃 , and a concept (shown in purple), we optimize the new
positions 𝑃 of the deformed letter 𝑙𝑖 iteratively. At each iteration, the set 𝑃 is fed into a differentiable rasterizer (DiffVG marked in blue) that outputs the
rasterized deformed letter 𝑙𝑖 . 𝑙𝑖 is then augmented and passed into a pretrained frozen Stable Diffusion model, that drives the letter shape to convey the
semantic concept using the ∇

𝑃
LLSDS loss (1). 𝑙𝑖 and 𝑙𝑖 are also passed through a low pass filter (LPF marked in yellow) to compute L𝑡𝑜𝑛𝑒 (2) which encourages

the preservation of the overall tone of the font style and also the local letter shape. Additionally, the sets 𝑃 and 𝑃 are passed through a Delaunay triangulation
operator (D marked in green), defining L𝑎𝑐𝑎𝑝 (3) which encourages the preservation of the initial shape.

512 × 512 image 𝑥𝑎𝑢𝑔 . Then 𝑥𝑎𝑢𝑔 is fed into the pretrained encoder
E of Stable Diffusion to produce the corresponding latent code
𝑧 = E(𝑥𝑎𝑢𝑔). The SDS loss is then applied in this latent space, in a
similar way to the one defined in DreamFusion:

∇𝜃LLSDS = E𝑡,𝜖

[
𝑤 (𝑡)

(
𝜖𝜙 (𝛼𝑡𝑧𝑡 + 𝜎𝑡𝜖,𝑦) − 𝜖

) 𝜕𝑧

𝜕𝑧𝑎𝑢𝑔

𝜕𝑥𝑎𝑢𝑔

𝜕𝜃

]
(3)

We find the SDS approach useful for our task of producing se-
mantic glyphs, and we follow the technical steps proposed in Vec-
torFusion (e.g. augmentations and the added suffix).

4 METHOD
Given a word𝑊 represented as a string with 𝑛 letters {𝑙1, ...𝑙𝑛}, our
method is applied to every letter 𝑙𝑖 separately to produce a semantic
visual depiction of the letter. The user can then choose which letters
to replace and which to keep in their original form.

4.1 Letter Representation
We begin by defining the parametric representation of the letters
in𝑊 . We use the FreeType font library [FreeType 2009] to extract
the outline of each letter. We then translate each outline into a set
of cubic Bézier curves, to have a consistent representation across
different fonts and letters, and to facilitate the use of diffvg [Li et al.
2020] for differentiable rasterization.
Depending on the letter’s complexity and the style of the font,

the extracted outlines are defined by a different number of control
points. We have found that the initial number of control points
affects the final appearance significantly: as the number of control
points increases, there is more freedom for visual changes to occur.
Therefore, we additionally apply a subdivision procedure to letters
containing a small number of control points. We define a desired
number of control points for each letter of the alphabet (shared
across different fonts), and then iteratively subdivide the Bézier
segments until reaching this target number. At each iteration, we

Fig. 6. Illustration of the letter’s outline and control points before (left) and
after (right) the subdivision process. The orange dots are the initial Bézier
curve segment endpoints. The blue dots are the remaining control points
respectively before and after subdivision.

compute the maximum arc length among all Bézier segments and
split each segment with this length into two (see Figure 6). We
analyse the effect of the number of control points in Section 5.3.
This procedure defines a set of 𝑘𝑖 control points 𝑃𝑖 = {𝑝 𝑗 }𝑘𝑖𝑗=1

representing the shape of the letter 𝑙𝑖 .

4.2 Optimization
The pipeline of our method is provided in Figure 5. Since we are
optimizing each letter 𝑙𝑖 separately, for brevity, we will omit the
letter index 𝑖 in the following text and define the set of control points
for the input letter as 𝑃 .

Given 𝑃 and the desired textual concept 𝑐 (both marked in purple
in Figure 5), our goal is to produce a new set of control points, 𝑃 ,
defining an adjusted letter 𝑙 that conveys the given concept, while
maintaining the overall structure and characteristics of the initial
letter 𝑙 .

We initialize the learned set of control points 𝑃 with 𝑃 , and pass
it through a differentiable rasterizer R [Li et al. 2020] (marked in
blue), which outputs the rasterized letter R(𝑃). The rasterized letter
is then randomly augmented and passed into a pretrained Stable
Diffusion [Rombach et al. 2021] model, conditioned on the CLIP’s
embedding of the given text 𝑐 . The SDS loss ∇

𝑃
LLSDS is then used
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Fig. 7. Visual illustration of the constraint Delaunay triangulation applied
to the initial shapes (left) and the resulting ones (right), for the word “pants”.
The ACAP loss maintains the structure of the letter after the deformation.
The zoomed rectangle shows the angles for a given control point 𝑝 𝑗 .

as described in Section 3 to encourage R(𝑃) to convey the given
text prompt.
To preserve the shape of each individual letter and ensure the

legibility of theword as awhole, we use two additional loss functions
to guide the optimization process. The first loss limits the overall
shape change by defining as-conformal-as-possible constraint on
the shape deformation. The second loss preserves the overall shape
and style of the font by constraining the tone (i.e. amount of dark
vs. light areas in local parts of the shape) of the modified letter not
to diverge too much from the original letter (see Section 4.3).
The gradients obtained from all the losses are then backpropa-

gated, to update the parameters 𝑃 . We repeat this process for 500
steps, which takes ∼ 5minutes to produce a single letter illustration
on RTX2080 GPU.

4.3 Loss Functions
Our primary objective of encouraging the resulting shape to con-
vey the intended semantic concept, is utilized by ∇

𝑃
LLSDS loss

(described in Section 3). We observe that using ∇
𝑃
LLSDS solely can

cause large deviations from the initial letter appearance, which is
undesired. Hence, our additional goal is to maintain the shape and
legibility of the letter R(𝑃), as well as to keep the original font’s
characteristics. For that purpose we use two additional losses.

As-Conformal-As-Possible Deformation Loss. To prevent the final
letter shape from diverging too much from the initial shape, we
triangulate the inner part of the letter and constrain the deformation
of the letter to be as conformal as possible (ACAP) [Hormann and
Greiner 2000]. We use constrained Delaunay triangulation [Barber
and Huhdanpaa 1995; Delaunay et al. 1934] on the set of control
points defining the glyph. It is known that Delaunay triangulation
can be used to produce the skeleton of an outline [Prasad 1997; Zou
et al. 2001], so the ACAP loss also implicitly captures a skeletal
representation of the letter form.

The Delaunay triangulationD(𝑃) splits the glyph represented by
𝑃 into a set of triangles. This defines a set of size𝑚 𝑗 of corresponding
angles for each control point 𝑝 𝑗 (see Figure 7). We denote this set of
angles as {𝛼𝑖

𝑗
}𝑚 𝑗

𝑖=1. The ACAP loss encourages the induced angles
of the optimized shape 𝑃 not to deviate much from the angles of
the original shape 𝑃 , and is defined as the L2 distance between the

Fig. 8. Our tone-preserving loss preserves the local tone of the font by
comparing the low-pass filter of the letters images before (left) and after
deformation (right). It constrains the adjusted letter not to deviate too much
from the original. This example is of the letter B and the word “Bear”.

corresponding angles:

L𝑎𝑐𝑎𝑝 (𝑃, 𝑃) =
1
𝑘

𝑘∑︁
𝑗=1

(𝑚 𝑗∑︁
𝑖=1

(
𝛼𝑖𝑗 − 𝛼𝑖𝑗

)2) (4)

where 𝑘 = |𝑃 | and 𝛼 are the angles induced by D(𝑃).

Tone Preservation Loss. To preserve the style of the font as well
as the structure of the letter we add a local-tone preservation loss
term. This term constrains the tone (amount of black vs. white in
all regions of the shape) of the adjusted letter not to deviate too
much from tone of the original font’s letter. Towards this end, we
apply a low pass filter (LPF) to the rasterized letter (before and after
deformation) and compute the L2 distance between the resulting
blurred letters:

L𝑡𝑜𝑛𝑒 =
𝐿𝑃𝐹 (R(𝑃)) − 𝐿𝑃𝐹 (R(𝑃))

2
2 (5)

An example of the blurred letters is shown in Figure 8, as can be
seen, we use a high value of standard deviation 𝜎 in the blurring
kernel to blur out small details such as the ears of bear.

Our final objective is then defined by the weighted average of the
three terms:

min
𝑃

∇
𝑃
LLSDS (R(𝑃), 𝑐) + 𝛼 · L𝑎𝑐𝑎𝑝 (𝑃, 𝑃)

+𝛽𝑡 · L𝑡𝑜𝑛𝑒 (R(𝑃),R(𝑃))
(6)

where 𝛼 = 0.5 and 𝛽𝑡 depends on the step 𝑡 as described next.

4.4 Weighting
Choosing the relative weights of the three losses presented above
is crucial to the appearance of the final letter. While the ∇

𝑃
LLSDS

loss encourages the shape to deviate from its original appearance to
better fit the semantic concept, the two terms L𝑡𝑜𝑛𝑒 and L𝑎𝑐𝑎𝑝 are
responsible for maintaining the original shape. Hence, we have two
competing parts in the formula, and would like to find a balance
between them to maintain the legibility of the letter while allowing
the desired semantic shape to change.
We find that L𝑡𝑜𝑛𝑒 can be very dominant. In some cases, if it is

used from the beginning, no semantic deformation is performed.
Therefore, we adjust the weight of L𝑡𝑜𝑛𝑒 to kick-in only after some
semantic deformation has occurred. We define 𝛽𝑡 as follows:

𝛽𝑡 = 𝑎 · exp
(
− (𝑡 − 𝑏)2

2𝑐2
)

(7)
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Fig. 9. Word-as-images produced by our method for the word “YOGA”,
using eight different fonts.

with 𝑎 = 100, 𝑏 = 300, 𝑐 = 30. We analyse the affect of various
weighting in Section 5.3. Note that the same hyper-parameter choice
works for various words, letters, and fonts.

5 RESULTS
The robustness of our approach means it should be capable of han-
dling a wide range of input concepts as well as supporting different
font designs. Figures 1, 4, 33, 17, and more results in the supplemen-
tal file demonstrate that our approach can handle inputs from many
different categories and various fonts, and that the generated results
are legible and creative. Figure 9 demonstrate how the illustrations
created by our method for the same word follow the characteristics
of different fonts. Although the perceived aesthetics of a word-as-
image illustration can be subjective, we define three objectives for
an effective result: (1) it should visually capture the given semantic
concept, (2) it should maintain readability, and (3) it should preserve
the original font’s characteristics.
We evaluate the performance of our method on a randomly se-

lected set of inputs. We select five common concept classes - animals,
fruits, plants, sports, and professions. Using ChatGPT, we sample ten
random instances for each class, resulting in 50 words in total. Next,
we select four fonts that have distinct visual characteristics, namely
Quicksand, Bell MT, Noteworthy-Bold, and HobeauxRococeaux-
Sherman. For each word, we randomly sampled one of the four
fonts, and applied our method to each letter. For each word with
𝑛 letters we can generate 2𝑛 possible word-as-images, which are
all possible combinations of replacements of illustrated letters. A
selected subset of these results is presented in Figure 33. The results
of all letters and words are presented in the supplementary material.

As can be seen, the resulting word-as-image illustrations success-
fully convey the given semantic concept in most cases while still
remaining legible. In addition, our method successfully captures
the font characteristics. For example, in Figure 33, the replacements
for the “DRESS” and “LION” are thin and fit well with the rest of
the word. In addition, observe the serifs of the letter A used for the
fin of the shark in the “SHARK” example. We further use human
evaluation to validate this as described below.

Table 1. Perceptual study results. The level of concept recognizability and
letter legibility are very high, and style matching of the font is well above
random. The “Only SDS” results are created by removing our structure and
style preserving losses.

Method Semantics Legibility Font

Ours 0.8 0.9 0.51
Only SDS 0.88 0.53 0.33

5.1 Quantitative
We conduct a perceptual study to quantitatively assess the three
objectives of our resulting word-as-images. We randomly select two
instances from each of the resulting word-as-image illustrations
for the five classes described above, and visually select one letter
from each word, resulting in 10 letters in total. In each question
we show an isolated letter illustration, without the context of the
word. To evaluate the ability of our method to visually depict the
desired concept, we present four label options from the same class,
and ask participants to choose the one that describes the letter
illustration best. To evaluate the legibility of the results, we ask
participants to choose the most suitable letter from a random list of
four letters. To asses the preservation of the font style, we present
the four fonts and ask participants to choose the most suitable font
for the illustration. We gathered answers from 40 participants, and
the results are shown in Table 1. As can be seen, the level of concept
recognizability and letter legibility are very high, and the 51% of
style matching of the letter illustration to the original font is well
above random, which is 25%. We also test our algorithm without
the two additional structure and style preserving losses (L𝑎𝑐𝑎𝑝 and
L𝑡𝑜𝑛𝑒 ) on the same words and letters (“Only SDS” in the table).
As expected, without the additional constraints, the letter deforms
significantly resulting in higher concept recognizability but lower
legibility and font style preservation. More details and examples are
provided in the supplementary material.

5.2 Comparison
In the absence of a relevant baseline for comparison, we define base-
lines based on large popular text-to-image models. Specifically, we
use (1) SD Stable Diffusion [Rombach et al. 2021], (2) SDEdit [Meng
et al. 2022], (3) DallE2 [Ramesh et al. 2022] illustrating the word,
(4) DallE2+letter illustrating only the letter, and (5) CLIPDraw
[Frans et al. 2021]. We applied the methods above (details can be
found in supplemental material) to three representative words –
“bird”, “dress”, and “tulip”, with the fonts Bell MT, Quicksand, and
Noteworthy-Bold, respectively. The results can be seen in Figure 10.
In some cases Stable Diffusion (SD) did not manage to produce

text at all (such as for the bird) and when text is produced, it is
often not legible. The results obtained by SDEdit preserve the font’s
characteristics and the letter’s legibility, but often fail to reflect
the desired concept, such as in the case of the bird and the dress.
Additionally, it operates in the raster domain and tends to add details
on top of the letter, while our method operates directly on the vector
representation of the letters with the objective of modifying their
shape. DallE2 manages to reflect the visual concept, however it often
fails to produce legible text. When applied with a dedicated prompt
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The word
BIRD and
the letter R

The word
DRESS and
the letter E

The word
TULIP and
the letter U

Input SD SDEdit DallE2 DallE2+letter CLIPDraw Ours

Fig. 10. Comparison to alternative methods based on large scale text-to-image models. On the left are the letters used as input (only for SDEdit, CLIPDraw, and
ours), as well as the desired object of interest. The results from left to right obtained using Stable Diffusion [Rombach et al. 2021], SDEdit [Meng et al. 2022],
DallE2 [Ramesh et al. 2022], DallE2 with a letter specific prompt, CLIPDraw [Frans et al. 2021], and our single-letter results, as well as the final word-as-image.

to produce the word-as-image of only one letter (fifth column), it
manages to produce a legible letter, but there is less control over
the output – it is impossible to specify the desired font or to control
the size, position, and shape of the generated letter. Therefore, it is
not clear how to combine these output illustrations into the entire
word to create a word-as-image.

CLIPDraw produces reasonable results conveying the semantics
of the input word. However, the results are non-smooth and the
characteristics of the font are not preserved (for example observe
how the letter "E" differs from the input letter). We further examine
CLIPDraw with our shape preservation losses in the next Section.

5.3 Ablation
Figure 11 illustrates the impact of the letter’s initial number of
control points. When less control points are used (𝑃𝑜 is the original
number of control points), we may get insufficient variations, such
as for the gorilla. However, this can also result in more abstract
depictions, such as the ballerina. As we add control points, we get
more graphic results, with the tradeoff that it often deviate from the
original letter. In Figure 15 we show the results of using only the
∇
𝑃
LLSDS loss. As can be seen, in that case the illustrations strongly

convey the semantic concept, however at the cost of legibility. In
Figure 16 we analyze the effect of the weight 𝛼 applied to L𝑎𝑐𝑎𝑝 .
Ranging from 1 to 0. When L𝑎𝑐𝑎𝑝 is too dominant, the results may
not enough reflect the semantic concept, while the opposite case
harms legibility. Figure 13 illustrates a change in the 𝜎 parameter of
the low pass filter. When 𝜎 = 1 almost no blur is applied, resulting
in a shape constraint that is too strong.
In Figure 14 we show the results of replacing the ∇

𝑃
LLSDS loss

with a CLIP based loss, while using our proposed shape preservation
terms. Although the results obtained with CLIP often depict the
desired visual concept, we find that using Stable Diffusion leads
to smoother illustrations, that capture a wider range of semantic
concepts.

By using the hyperparameters described in the paper, we are able
to achieve a reasonable balance between semantics and legibility.
The parameters were determined manually based on visual assess-
ments, but can be adjusted as needed based on the user’s personal
taste and goals.

"Ballet"

"Gorilla"

"Gym"

Input 𝑃𝑜 𝑃 2 × 𝑃

Fig. 11. The effect of the initial number of control points on outputs. On the
left are the input letters and the target concepts used to generate the results
on the right. 𝑃𝑜 indicates the original number of control points as extracted
from the font, 𝑃 is the input letter with our chosen hyperparameters, and
for 2 × 𝑃 we increase the number of control points in 𝑃 by two.

6 CONCLUSIONS
We presented a method for the automatic creation of vector-format
word-as-image illustrations. Our method can handle a large variety
of semantic concepts and use any font, while preserving the legibility
of the text and the font’s style.
There are limitations to our method. First, our method works

letter by letter, and therefore, it cannot deform the shape of the
entire word. In the future we can try to optimize the shape of several
letters. Second, the approach works best on concrete visual concepts,
and may fail with more abstract ones. This can be alleviated by
optimizing the shape of letters using different concepts than the
word itself. Third, the layout of letters can also be automated for
example, using methods such as [Wang et al. 2022].
Our word-as-image illustrations demonstrate visual creativity

and open the possibility for the use of large vision-language models
for semantic typography, possibly also adding human-in-the-loop
to arrive at more synergistic design methods of ML models and
humans.
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"Bear"

"Singer"

"Giraffe"

Input 1 5 30 200 Without
L𝑡𝑜𝑛𝑒

Fig. 13. Altering the 𝜎 parameter of the low pass filter using in the L𝑡𝑜𝑛𝑒

loss. On the leftmost column are the original letters and concepts used, then
from left to right are the results obtained when using 𝜎 ∈ {1, 5, 30, 200},
and without L𝑡𝑜𝑛𝑒 .

Input
Letter

CLIP
loss

SDS
loss

"Snail" "Skirt" "Socks" "Queen" "Strawberry"

Fig. 14. Replacing the SDS loss with a CLIP-based loss.

Input
Letter

Ours

Only
SDS

"Cat" "Music" "Robot" "Cup" "Hands"

Fig. 15. The effect of using only the SDS loss: note how the third row simply
looks like icon illustrations, while the second row still resembles legible
letters.

"Bear"

"Singer"

"Giraffe"

Input 1 0.75 0.5 0.25 Without
L𝑎𝑐𝑎𝑝

Fig. 16. Altering the weight 𝛼 of the L𝑎𝑐𝑎𝑝 loss. On the leftmost column
are the original letters and concepts used, then from left to right are the
results obtained when using 𝛼 ∈ {1, 0.75, 0.5, 0.25, 0}.

Fig. 12. Word-as-images produced by our method. This subset was chosen from the random set of words.
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Fig. 17. Additional results produced by our method.
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SUPPLEMENTARY MATERIAL

A IMPLEMENTATION DETAILS
In this section we provide further implementation details. We intend
to release the code to promote future research in this domain.
Our method is based on the pre-trained 𝑣1 − 5 Stable Diffusion

model [Rombach et al. 2021], which we use through the diffusers
[von Platen et al. 2022] Python package. We optimize only the
control points’ coordinates (i.e. we do not modify the color, width,
and other parameters of the shape). We use the Adam optimizer with
𝛽1 = 0.9, 𝛽2 = 0.9, 𝜖 = 10−6. We use learning rate warm-up from
0.1 to 0.8 over 100 iterations and exponential decay from 0.8 to 0.4
over the rest 400 iterations, 500 iteration in total. The optimization
process requires at least 10GBmemory and approximately 5 minutes
to produce a single letter illustration on RTX2080 GPU.

Before we feed the rasterized 600𝑥600 letter image into the Stable
Diffusion model, we apply random augmentations as proposed in
CLIPDraw [Frans et al. 2021]. Specifically, perspective transform
with a distortion scale of 0.5, with probability 0.7, and a random
512𝑥512 crop. We add the suffix "a [word]. minimal flat 2d vector.
lineal color. trending on artstation." to the target word𝑊 , before
feeding it into the text encoder of a pretrained CLIP model.

B COMPARISONS
As described in Section 5.2 we define five baselines to compare with.
In this section we provide more details about the evaluation and
more qualitative results. For (1) SD, we run Stable Diffusion [Rom-
bach et al. 2021] with the default hyper parameters of 50 inference
steps and a guidance scale of 7.5. We use the prompt “Word as image
of the word [word]. [font] font. minimal flat 2d vector. lineal color.
black and white style”.

For (2) SDEdit [Meng et al. 2022], we utilized the diffusers [von
Platen et al. 2022] implementation, using the prompt “A [word].
minimal flat 2d vector. lineal color. black and white style”, and the
rasterized input letter as the reference image. We use the default
values of 50 inference steps and a guidance scale of 7.5. We use a
strength value of 0.85. The strength value determines the quantity
of noise added to the input image – a value close to 1.0 results in
higher degree of variation in the output, and vice versa.

We use the official website of OpenAI to run (3) DallE2 [Ramesh
et al. 2022], using the prompt “Word as image of the word [word].
Where the letter [letter] looks like a [word]. [font] font. minimal
flat 2d vector. lineal color. black and white style”. To encourage
the manipulation of a specific letter, for (4) DallE2+letter we use
the prompt “The letter [letter] in the shape of a [word]. [font] font.
minimal flat 2d vector. lineal color. black and white style”. For (5)
CLIPDraw [Frans et al. 2021], we use the author’s official implemen-
tation with the recommended hyper-parameters. Instead of using
randomly initialized strokes, we use our vectorized letter as input,
along with the prompt “A [word]. [font] font. minimal flat 2d vector.
lineal color. black and white style”. We provide more comparisons
to the methods described above in Figure 20.

Fig. 18. Some additional examples of word-as-image applied on Chinese
characters. In Chinese, a whole word can be represented by one character.
Here we show from left: bird, rabbit, cat and surfing (two last characters
together). The complexity of characters imposes an additional challenge for
our method. This could be alleviated in the future for example by dividing
the characters to radicals and applying the method only on parts of the
character.

C PERCEPTUAL STUDY
In this section, we provide more details about the perceptual study
described in Section 5.1. The randomly chosen objects, fonts, and
letters are shown in Table 2. A few visual examples are shown in
Figure 19.

Ours Only SDS

"Coat"

"Soccer"

"Shirt"

"Rugby"

Font
Rec.

Fig. 19. Examples of illustrations presented in the perceptual study. Each
pair in the top part shows illustrations obtained using our proposed method
(left) and using only SDS loss (right). On the bottom is an example of an
illustration presented for the font recognition questions.

D ADDITIONAL RESULTS
We provide additional results of our generated word-as-images. In
Figures 21-32 we show results of selected words and unique fonts.
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"Muffin"

"Tiger"

"Octopus"

"Plant"

"Astronaut"

"Robot"

"Bunny"

"Flamingo"

"Paris"

"Owl"

"Swan"

"Mermaid"

Input SD SDEdit DallE2 DallE2+letter CLIPDraw Ours

Fig. 20. Comparison to alternative methods based on large scale text-to-image models. On the left are the letters used as input (only for SDEdit, CLIPDraw,
and ours), as well as the desired object of interest. The results from left to right obtained using Stable Diffusion [Rombach et al. 2021], SDEdit [Meng et al.
2022], DallE2 [Ramesh et al. 2022], DallE2 with a letter specific prompt, CLIPDraw [Frans et al. 2021], and our single-letter results.

In Figures 33-48 we show the results obtained for the random set of
words.
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Table 2. Randomly chosen objects, letters, and fonts for the perceptual
study.

Object Letter Font

Pineapple P Noteworthy-Bold
Orange O Quicksand
Rugby Y Noteworthy-Bold
Soccer S Noteworthy-Bold
Bear B Bell MT
Lion O Quicksand
Singer N Noteworthy-Bold
Pilot P Noteworthy-Bold
Coat O HobeauxRococeaux-Sherman
Shirt S Bell MT

Fig. 21. Word-as-image illustrations created by our method.
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Fig. 22. Word-as-image illustrations created by our method.

Fig. 23. Word-as-image illustrations created by our method.

Fig. 24. Word-as-image illustrations created by our method.
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Fig. 25. Word-as-image illustrations created by our method.

Fig. 26. Word-as-image illustrations created by our method.
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Fig. 27. Word-as-image illustrations created by our method.

Fig. 28. Word-as-image illustrations created by our method.
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Fig. 29. Word-as-image illustrations created by our method.

Fig. 30. Word-as-image illustrations created by our method.
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Fig. 31. Word-as-image illustrations created by our method.

Fig. 32. Word-as-image illustrations created by our method.
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Fig. 33. Word-as-image illustrations created by our method for randomly chosen words.

Fig. 34. Word-as-image illustrations created by our method for randomly chosen words.
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Fig. 35. Word-as-image illustrations created by our method for randomly chosen words.

Fig. 36. Word-as-image illustrations created by our method for randomly chosen words.
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Fig. 37. Word-as-image illustrations created by our method for randomly chosen words.

Fig. 38. Word-as-image illustrations created by our method for randomly chosen words.
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Fig. 39. Word-as-image illustrations created by our method for randomly chosen words.

Fig. 40. Word-as-image illustrations created by our method for randomly chosen words.
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Fig. 41. Word-as-image illustrations created by our method for randomly chosen words.

Fig. 42. Word-as-image illustrations created by our method for randomly chosen words.
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Fig. 43. Word-as-image illustrations created by our method for randomly chosen words.

Fig. 44. Word-as-image illustrations created by our method for randomly chosen words.
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Fig. 45. Word-as-image illustrations created by our method for randomly chosen words.

Fig. 46. Word-as-image illustrations created by our method for randomly chosen words.
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Fig. 47. Word-as-image illustrations created by our method for randomly chosen words.



28 • Anon.

Fig. 48. Word-as-image illustrations created by our method for randomly chosen words.
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